LoopIng: a template-based tool for predicting the structure of protein loops
نویسندگان
چکیده
MOTIVATION Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function. RESULTS We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop). AVAILABILITY AND IMPLEMENTATION www.biocomputing.it/looping. CONTACT [email protected]. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Modeling large regions in proteins: applications to loops, termini, and folding.
Template-based methods for predicting protein structure provide models for a significant portion of the protein but often contain insertions or chain ends (InsEnds) of indeterminate conformation. The local structure prediction "problem" entails modeling the InsEnds onto the rest of the protein. A well-known limit involves predicting loops of ≤12 residues in crystal structures. However, InsEnds ...
متن کاملDynamics of single DNA looping and cleavage by Sau3AI and effect of tension applied to the DNA.
Looping and cleavage of single DNA molecules by the two-site restriction endonuclease Sau3AI were measured with optical tweezers. A DNA template containing many recognition sites was used, permitting loop sizes from approximately 10 to 10,000 basepairs. At high enzyme concentration, cleavage events were detected within 5 s and nearly all molecules were cleaved within 5 min. Activity decreased a...
متن کاملA rapid simple approach to quantify chromosome conformation capture
Chromosome conformation capture (3C) is a powerful tool to study DNA looping. The procedure generates chimeric DNA templates after ligation of restriction enzyme fragments juxtaposed in vivo by looping. These unique ligation products (ULPs) are typically quantified by gel-based methods, which are practically inefficient. Taqman probes may be used, but are expensive. Cycle threshold (Ct) determi...
متن کاملProtein Loop Modeling Using a New Hybrid Energy Function and Its Application to Modeling in Inaccurate Structural Environments
Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications,...
متن کاملProtein-mediated loops and phase transition in nonthermal denaturation of DNA
We use a statistical mechanical model to study nonthermal denaturation of DNA in the presence of protein-mediated loops. We find that looping proteins which randomly link DNA bases located at a distance along the chain could cause a first-order phase transition. We estimate the denaturation transition time near the phase transition, which can be compared with experimental data. The model descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 31 شماره
صفحات -
تاریخ انتشار 2015